The Complexity of Interior Point Methods for Solving Discounted Turn-Based Stochastic Games

نویسندگان

  • Thomas Dueholm Hansen
  • Rasmus Ibsen-Jensen
چکیده

We study the problem of solving discounted, two player, turn based, stochastic games (2TBSGs). Jurdziński and Savani showed that in the case of deterministic games the problem can be reduced to solving P -matrix linear complementarity problems (LCPs). We show that the same reduction also works for general 2TBSGs. This implies that a number of interior point methods can be used to solve 2TBSGs. We consider two such algorithms: the unified interior point method of Kojima, Megiddo, Noma, and Yoshise, and the interior point potential reduction algorithm of Kojima, Megiddo, and Ye. The algorithms run in time O((1 + κ)nL) and O(−δ θ n 4 log −1), respectively, when applied to an LCP defined by an n× n matrix M that can be described with L bits, and where the potential reduction algorithm returns an -optimal solution. The parameters κ, δ, and θ depend on the matrix M . We show that for 2TBSGs with n states and discount factor γ we get κ = Θ( n (1−γ)2 ), −δ = Θ( √ n 1−γ ), and 1/θ = Θ( n (1−γ)2 ) in the worst case. The lower bounds for κ, −δ, and 1/θ are all obtained using the same family of deterministic games.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

Corrector-predictor arc-search interior-point algorithm for $P_*(kappa)$-LCP acting in a wide neighborhood of the central path

In this paper, we propose an arc-search corrector-predictor interior-point method for solving $P_*(kappa)$-linear complementarity problems. The proposed algorithm searches the optimizers along an ellipse that is an approximation of the central path. The algorithm generates a sequence of iterates in the wide neighborhood of central path introduced by Ai and Zhang. The algorithm does not de...

متن کامل

Exact Algorithms for Solving Stochastic Games

Shapley’s discounted stochastic games, Everett’s recursive games and Gillette’s undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games. When the number of positions of the game is constant, our algorithms run in polynomial time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013